III Semester M.Sc. Degree Examination, December 2014 (Y2K11 Scheme) (RNS) MATHEMATICS M 302 : Numerical Analysis and Matlab/Scilab Programming – I

Time : 3 Hours

Instructions: i) Answer **any five full** questions choosing atleast **one** from **each** Part.

ii) All questions carry equal marks.

PART-A

1.	a)	Using the modified Newton-Raphson method find a double real root of $4x^4 - 8x^3 + x^2 - 3x + 9 = 0$ in [1, 2].		
	b)	Show that Newton-Raphson method for a double real root of $f(x) = 0$ has linear convergence.	4	
	c)	Using Ramanujan's method find the smallest real root of $x = e^{-x}$.	4	
2.	a)	Solve using Crout's method $4x_1 + 2x_2 + 14x_3 = 14$ $2x_1 + 17x_2 - 5x_3 = -101$ $14x_1 - 5x_1 + 83x_1 = 155$	6	
	b)	Using Newton-Raphson method, solve the nonlinear equations $x^2 - y^2 = 4$; $x^2 + y^2 = 16$ given $x_0 = y_0 = 2\sqrt{2}$.	6	
3.	a)	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by subdividing the interval [0, 1] into two equal parts and then applying the Gauss-Legendre three point formula. Estimate the error comparing with the exact value.	8	
	b)	Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} dxdy$ using Simpson's method (h = k = 0.5). Estimate the error comparing with the exact value.	4	

P.T.O.

PG – 138

Max. Marks: 60

6

6

6

PART-B

- 4. a) Find the error in representing a function by a hermite interpolating polynomial when (x_i, y_i, y'_i) are given.
 - b) Fit a cubic-spline curve that passes through (0, 1), (1, 4), (2, 0) and (3, -2)with clamped end conditions s'(0) = 2 and s'(3) = 2. **7**
- 5. a) From the following table :

Obtain Lagrange bivariate interpolation and hence find f(0.5, 0.5).

b) Find the least squares approximation of second degree from the following data :

x :	- 2	- 1	0	1	2
f(x) :	15	1	1	3	19

- 6. a) Find the approximation $R_{1,1} = \frac{a_0 + a_1 x}{1 + b_1 x}$ to the function $f(x) = \cos(x)$. Find the maximum error in [0, 1].
 - b) Find the rational approximants $R_{2,3}$ for the function f(x) = sinx. 6

PART-C

- 7. a) Illustrate the use of loop and conditional statement using simple examples in Matlab/scilab.
 - b) Explain through examples two dimensional and three dimensional graphics in Matlab/Scilab. Include title of the graph, labeling axes and one such other feature in both.
- 8. Write Matlab/Scilab programms for the following :
 - a) To find a simple real root of the equation $f(x) = \cos x x e^x = 0$ using fixed point or Newton-Raphson methods. Prescribe a tolerance in error of 10^{-4} . Comment on which of the two iterative methods is faster.
 - b) To numerically integrate any definite integral of your choice by any one quadratic formula. Mention the integral used and the method used for numerical integration.

6

6

6

6