III Semester M.Sc. Degree Examination, December 2014 (Y2K11 Scheme) (RNS)
 MATHEMATICS
 M 302 : Numerical Analysis and Matlab/Scilab Programming - I

Time: 3 Hours
Max. Marks : 60

Instructions: i) Answerany five full questions choosing atleastone from each Part.
 ii) All questions carry equal marks.

PART - A

1. a) Using the modified Newton-Raphson method find a double real root of $4 x^{4}-8 x^{3}+x^{2}-3 x+9=0$ in [1, 2].
b) Show that Newton-Raphson method fora double real root of $f(x)=0$ has linear convergence.
c) Using Ramanujan's method find the smallest real root of $x=e^{-x}$.
2. a) Solve using Crout's method
$4 x_{1}+2 x_{2}+14 x_{3}=14$
$2 x_{1}+17 x_{2}-5 x_{3}=-101$
$14 x_{1}-5 x_{2}+83 x_{3}=155$.
b) Using Newton-Raphson method, solve the nonlinear equations
$x^{2}-y^{2}=4 ; x^{2}+y^{2}=16$ given $x_{0}=y_{0}=2 \sqrt{2}$.
3. a) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by subdividing the interval $[0,1]$ into two equal parts and then applying the Gauss-Legendre three point formula. Estimate the error comparing with the exact value.
b) Evaluate $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$ using Simpson's method ($h=k=0.5$). Estimate the error comparing with the exact value.

PART-B
4. a) Find the error in representing a function by a hermite interpolating polynomial when ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}^{\prime}$) are given.
b) Fit a cubic-spline curve that passes through (0,1), (1,4), $(2,0)$ and $(3,-2)$ with clamped end conditions $s^{\prime}(0)=2$ and $s^{\prime}(3)=2$.
5. a) From the following table :

\mathbf{y}	0	1	2
0	1	3	7
1	3	6	11
2	7	11	17

Obtain Lagrange bivariate interpolation and hence find $f(0.5,0.5)$.
b) Find the least squares approximation of second degree from the following data:

$\mathbf{x}:$	-2	-1	0	1	2
$\mathbf{f}(\mathbf{x}):$	15	1	1	3	19

6. a) Find the approximation $R_{1,1}=\frac{a_{0}+a_{1} x}{1+b_{1} x}$ to the function $f(x)=\cos (x)$. Find the maximum error in $[0,1]$.
b) Find the rational approximants $R_{2,3}$ for the function $f(x)=\sin x$.

PART-C

7. a) Illustrate the use of loop and conditional statement using simple examples in Matlab/scilab.

6
b) Explain through examples two dimensional and three dimensional graphics in Matlab/Scilab. Include title of the graph, labeling axes and one such other feature in both.
8. Write Matlab/Scilab programms for the following :
a) To find a simple real root of the equation $f(x)=\cos x-x e^{x}=0$ using fixed point or Newton-Raphson methods. Prescribe a tolerance in error of 10^{-4}. Comment on which of the two iterative methods is faster.
b) To numerically integrate any definite integral of your choice by any one quadratic formula. Mention the integral used and the method used for numerical integration.

